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Abstract

We examined the effect of freshwater inflows on the aquatic environment and macrofauna in the intermediate and brackish zones
of the Breton Sound estuary. Following water releases from the Caernarvon Freshwater Diversion Structure in winter 2000 and
spring 2001, we compared environmental conditions and the abundance and distribution of nekton in May 2001 between the inflow
area, which receives freshwater directly from the structure, and a nearby reference area. We used these data and stable isotope
analyses for C, N, and S in brown shrimp Farfantepenaeus aztecus and two species of grass shrimp (Palaemonetes paludosus and
Palaemonetes intermedius) to test four null hypotheses: (1) water quality and SAV (submerged aquatic vegetation) coverage were
similar between the inflow and reference areas, (2) macrofaunal abundance and biomass were similar between the two areas, (3)
stable isotopic values of brown shrimp and grass shrimp were similar between areas, habitat types, and species, and (4) brown
shrimp distributions were unaffected by river inputs. Freshwater from the structure clearly influenced the estuarine environment
within the inflow area. Releases from the Caernarvon structure freshened the inflow area as intended and increased SAV and
daytime dissolved oxygen concentrations. The response by macrofauna to these increased freshwater flows and habitat changes
involved mostly changes in density and biomass rather than shifts in species composition. Although we detected no strong effect of
the freshwater diversion on brown shrimp abundance or size in the inflow area, results of the sulfur stable isotope analysis indicated
that brown shrimp collected in the inflow area had been growing in higher salinity waters, possibly following downstream
displacement by the diversion. Species that would benefit most from continued freshwater diversions are likely to be those species
that both use SAV as nursery habitat and thrive in a low-salinity environment. Nutrients carried by water from the structure were
incorporated into the estuarine food web, and these nutrient inputs, together with an increase in SAV habitat, may enhance overall
secondary productivity in the inflow area.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Siphons and water-control structures of various sizes
are currently being used in Louisiana to divert water
from the Mississippi River into nearby estuaries. The
management goals of these freshwater diversions are to
control salinity, improve water quality, restore coastal
wetlands, increase fishery production, and reduce the
threat of flooding to downstream urban areas. Many
additional large capacity structures are also being
planned in the state to divert Mississippi River water
into coastal areas for wetland restoration.

Increased inflow of freshwater influences numerous
estuarine characteristics that affect primary and second-
ary productivity (Alber, 2002). For example, freshwater
inflows directly alter estuarine salinities, which can
influence the distribution and productivity of estuarine
animals. Estuarine salinities respond to the volume and
timing of freshwater inflows, and these factors have been
related to the productivity of important coastal fisheries
(Gunter and Hildebrand, 1954; White and Perret, 1974;
Browder, 1985; Flint, 1985; Gracia, 1991; Gammelsrad,
1992; Wilber, 1994; Loneragan and Bunn, 1999;
Galindo-Bect et al., 2000).

Freshwater releases from the Caernarvon Diversion
Structure located in southeast Louisiana are controlled
to avoid potential negative impacts to brown shrimp
Farfantepenaeus aztecus (Ives) in the Breton Sound
estuary. High flows that would substantially alter
salinity in the estuary are not released from the structure
in April and May when brown shrimp are most
abundant in estuarine nursery areas.

The evidence from the scientific literature for
a salinity effect on brown shrimp recruitment, distribu-
tion, growth, and production, however, is not clear. In
a laboratory setting at temperatures of 24.5—26.0 °C,
brown shrimp postlarvae survived and grew equally well
in salinities' of 2—40 (Zein-Eldin, 1963). Survival of
postlarvae decreased in salinities <5, however, when
temperatures were <15 °C (Zein-Eldin and Aldrich,
1965). Saoud and Davis (2003) reported juvenile brown
shrimp growth to be significantly higher at salinities of 8
and 12 than at 2 and 4. In a laboratory salinity gradient
(0—70), Keiser and Aldrich (1973) found that postlarval
brown shrimp selected for salinities mainly between 5
and 20. Numerous studies based on field observations
have reported an effect of salinity on the abundance and
distribution of brown shrimp. The conclusions of these
studies, however, have not been consistent and range
from reports that brown shrimp were most abundant at
salinities >15 (e.g., Longley, 1994) to those showing
that most shrimp occurred at salinities <5 (e.g., Parker,

! The Practical Salinity Scale was used for measuring and reporting
all salinity values.

1970). It is difficult to assess the effect of salinity or
freshwater flow on shrimp populations because many
variables other than salinity can influence recruitment
and may confound the results of most field studies.

Freshwater inflows not only dilute salinity, but also
carry distinct stable isotope values that can be traced
through the estuarine food web. Stable isotope analysis,
therefore, provides a powerful tool for examining the
connection between freshwater inflows from river
diversions and estuarine consumers (Fry, 2002a).

The objective of our study was to document
springtime habitat conditions and distribution patterns
of brown shrimp and other species of nekton in the
vicinity of the Caernarvon Diversion Structure. Densi-
ties of nekton and environmental variables within
intermediate and brackish marsh zones were docu-
mented and compared between an area that receives
freshwater directly from the structure (henceforth re-
ferred to as the inflow area) and a nearby reference area
to assess the effect of freshwater flows from the structure
on habitat use. In addition, we used stable isotope
analyses of brown shrimp and grass shrimp tissues to
examine the effect of the diversion on these estuarine
consumers. These density and stable isotope data were
used to test four null hypotheses: (1) water quality and
SAV (submerged aquatic vegetation) coverage were
similar between the inflow and reference areas, (2)
macrofaunal abundance and biomass were similar
between the two areas, (3) stable isotopic '*C, '°N,
and **S compositions of brown shrimp and grass shrimp
were similar between areas, habitat types, and species,
and (4) brown shrimp distributions were unrelated to
river inputs from the diversion.

2. Study areas

The Breton Sound estuary is located in southeastern
Louisiana, and is bounded on the north by the
Mississippi River Gulf Outlet and on the south by the
Mississippi River (Fig. 1). The Caernarvon Freshwater
Diversion Structure was constructed in 1991 at the head
of the estuary near Big Mar and is capable of diverting
226 m®s™' (8000 ft® s™") of Mississippi River water into
the Breton Sound Basin (USACOE, 1993; Lane et al.,
1999). The structure has been operated since its
construction to reduce oyster mortality from predation
by lowering salinities at the productive oyster seed
grounds in the basin. A second goal of the diversion is to
halt the conversion of fresh and intermediate marshes
(i.e., prime alligator, muskrat, and waterfowl habitat) to
brackish and saline marshes. Most of the freshwater
released by the Caernarvon structure flows south and
east, and little, if any, of this flow is thought to reach
that portion of the basin north of Bayou Terre Aux
Boeufs (Fig. 1). Because freshwater inflows from the
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Fig. 1. Map of the study area showing the two transects and 100 sample sites within the Breton Sound estuary. The inflow and reference areas are
located south and north, respectively of Bayou Terre Aux Bocufs. Marsh sample sites are shown as (riangles. Water (SAV, submerged aquatic
vegetation, and SNB, subtidal nonvegetated bottom) sample sites are represented by stars. The location of the Caernarvon Diversion Structure is

shown northwest of Lake Lery.

structure should only effect macrofaunal populations
south of Bayou Terre Aux Boeufs, we selected the area
north of Bayou Terre Aux Boeufs as a reference area for
our study.

3. Methods
3.1. Nekton samples

We sampled marsh and pond areas along two
transects within the intermediate and brackish marsh
zones of the Breton Sound Basin May 7-11, 2001
(Fig. 1). Our sampling effort followed prolonged releases
of freshwater from the Caernarvon structure during
winter 2000 and spring 2001 (Lane et al., 2004). All
samples were taken at randomly-selected sites along two
northwest—southeast oriented transects between Lost
Lake and Bay La Fourche in the inflow area and from

Louisiana Highway 300 to Lake Jean Louis Robin in
the reference area. We located sites along these two
approximately 2-km wide by 20-km (inflow area) and
14-km (reference area) long transects to ensure that our
sample sites were spread across the intermediate and
brackish marsh zones of both areas.

We collected 16 samples on the marsh surface and 34
samples in open water in each area (inflow and reference)
using a 1 m? drop sampler (Zimmerman et al., 1984) for
a total of 100 samples. We chose a drop sampler for this
study because it is effective in dense emergent vegetation,
and the catch efficiency of this enclosure device does not
appear to vary substantially with habitat characteristics
typical of shallow estuarine areas (Rozas and Minello,
1997). The sampler was a 1.14-m-diameter cylinder that
we dropped from a boom attached to a shallow-draft
boat. The boat (unpowered) was allowed to drift until
the cylinder was over a sample site or two persons
positioned the cylinder over a sample site by slowly
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pushing from the boat’s stern. When released from the
boom, the cylinder rapidly entrapped organisms within
a 1.0-m? sample area. We collected more samples in open
water (submerged aquatic vegetation = SAV or subtidal
nonvegetated bottom = SNB) than on the marsh surface
to ensure that at least some of these sites contained SAV.

After the cylinder was dropped, we measured water
temperature, dissolved oxygen, salinity, and turbidity
using the methods described by Minello and Zimmer-
man (1992). We determined water depth at each sample
site by averaging five depth measurements taken within
the sampler. We also measured the distance from the
middle of the sample area to the nearest marsh—water
interface. At marsh sites, plant stems were clipped at
ground level, counted (dead and alive combined), and
removed from the cylinder. If SAV was present at open-
water sites, we estimated coverage within the sampler
(0—100%) and identified the species of plants present.

After measuring the environmental variables, we
captured nekton trapped in the drop sampler by using
dip nets and filtering the water pumped out of the
enclosure through a 1-mm-mesh net. When the sampler
was completely drained, any animals remaining on the
bottom were removed by hand. Samples were preserved
in 10% formalin and returned to the laboratory for
processing.

In the laboratory, the samples were sorted, and
animals were identified to lowest feasible taxon. We used
the nomenclature of Perez-Farfante and Kensley (1997)
for penaeid shrimps and identified species using the
protocol described in Rozas and Minello (1998). Twenty
specimens of Farfantepenaeus could not be reliably
identified either because of their size (total length 13—
18 mm) or because they were damaged; these shrimps
were assigned as brown shrimp Farfantepenaeus aztecus
(Ives) or pink shrimp Farfantepenaeus duorarum (Bur-
kenroad) based on the proportion of identified species in
each sample. Animals that could not be reliably
identified were not used in size analyses. Total length
(TL) of fishes and shrimps and carapace width (CW) of
crabs were measured to the nearest mm. We determined
the biomass for each species by pooling individuals in
a sample and measuring wet weight to the nearest 0.1 g.

3.2. Isotope analysis

A total of 37 brown shrimp (inflow area = 17,
reference area = 20) and 39 grass shrimp ( Palaemonetes
paludosus: inflow area = 20, reference area = 1; Palae-
monetes intermedius: inflow area =9, reference
area = 9) samples were used for stable isotope analysis.
These samples consisted of pooled shrimp (15 individ-
uals) collected at the same site and time. To reduce the
variability of isotopic values associated with differ-
ent tissue types (Schmidt et al., 2004), we only used
muscle tissue that was dissected from the tail of each

specimen. This dissected tissue was rinsed, dried at
60 °C, pulverized, and analyzed for elemental and
isotopic compositions with an integrated system con-
sisting of an elementary analyzer linked to an isotope
ratio mass spectrometer (Barrie and Prosser, 1996;
Monaghan et al., 1999; Fry et al., 2002). Results are
reported in d notation relative to international standards
PeeDee Belemnitella americana (PDB) for 6'3C, N in air
for 6'°N, and Canyon Diablo Troilite (CDT) for 6**S.
Isotopic abundances are given as:

6X: [(Rsample/Rstandard) - l] 1000

where X is '°N, °C or *S, and R is '*N/"*N, 3C/"*C or
3432
S/°°S.
Samples split in the laboratory and analyzed in
duplicate usually gave isotopic compositions that agreed
within a 0.5%, range.

4. Statistical analyses

We used a one-way Analysis of Variance (ANOVA)
followed by a priori contrasts to examine differences in
densities and biomass of brown shrimp and other
selected taxa, sizes of selected species, and environmen-
tal characteristics (salinity, water temperature, dissolved
oxygen, water depth, turbidity, and distance-to-edge)
among habitat types (inflow marsh, reference marsh,
inflow SAV, reference SAV, and reference SNB). We
examined inflow impacts and effects of habitat types
using a priori contrasts. The first two contrasts
compared marsh and SAV habitat types between the
inflow and reference areas. The third contrast was
designed to compare open-water sites between the inflow
and reference areas. We used the fourth contrast to test
for differences between marsh and SAV habitat types.
Regression models and Analysis of Covariance
(ANCOVA) were used to examine potential relationships
between salinity and brown shrimp density in the basin. We
considered alpha levels of 0.05 to be significant in all
results, but we also assessed significance after adjusting
alpha levels for the Habitat Type effect using the sequential
Bonferroni method described by Rice (1989), which buffers
against error introduced by making multiple comparisons
with the same sample set (i.e., testing a hypothesis for
several species or variables). Densities and biomass of
animals were positively related to the standard deviation;
therefore, we performed a In (x + 1) transformation of the
original values prior to analyses. Other variables were not
transformed. In addition to simple regressions between
salinity and nekton abundance in samples to look for
relationships, we also classified samples into whole-
number salinity classes (ie., 1, 2, 3...n) and regressed
salinity class with mean nekton abundance. This analysis
removes variability in the dependent variable (abundance).
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All tabular and graphical data presented in this paper are
untransformed means. We conducted these statistical
analyses using SuperANOVA (Version 5 Ed., Abacus
Concepts, Inc., Berkeley, California, 1989) and Statview
(Version 4.5 Ed., Abacus Concepts, Inc., Berkeley,
California, 1995).

To investigate potential associations between taxa and
environmental variables, we performed canonical corre-
spondence analysis (CCA, CANOCO version 4). CCA is
a direct gradient analysis that relates the pattern of
community variation to the pattern of environmental
variables (Ter Braak and Prentice, 1988). Compared to
other ordination techniques, CCA has several advantages;
it is fairly robust and unaffected by data transformations
(Jackson, 1993, 1997), and it performs well for nonlinear
and unimodal relationships between species and environ-
mental variables, which usually cause severe problems for
linear ordination methods such as principal components
analysis (Ter Braak, 1986). We included all environmental
variables in the CCA that had been previously analyzed
in our ANOVA models, namely area, habitat, salinity,
oxygen, water temperature, turbidity, stem density,
distance-to-edge, water depth, and SAV coverage. Only
marsh and open water were used as habitat types because
SAYV coverage of 0% perfectly described SNB and made
this habitat class redundant. Fish and crustacean abun-
dances were log-transformed. We performed 1000 Monte
Carlo simulations to evaluate the significance levels of
these variables for CCA.. Significance of the CCA axes was
evaluated by running 1000 unrestricted Monte Carlo
simulations using the eigenvalues of the axes as test
statistics. Initially, we used the whole data set including
all 100 stations, and subsequently, we performed CCA on
the inflow and reference areas alone.

To assess the effects of location, habitat, and species,
we performed three-way ANOVAs for C, N, and S
isotopic values (SAS version 9.0, SAS Institute Inc.,
Cary, NC, USA, 2002). Since we could not detect any
significant differences between SAV and SNB sites, or
the two species of grass shrimp, the final analyses
resulted in a 2 X 2 X 2 factorial design, testing the
effects of location (inflow vs reference areas), habitat
(marsh vs open water), and species (brown shrimp vs
grass shrimp) on isotopic signatures. To account for the
unequal sample sizes, we used the Satterthwaite method
to estimate the degrees of freedom for the fixed effects,
and the p-values of pair wise comparisons were adjusted
using the Tukey method.

5. Results
5.1. Habitat characteristics

We found measurable differences in environmental
conditions between the inflow and reference areas

(Table 1). Although salinities along both transects
increased with distance down the estuary (Fig. 2),
freshwater flows from the structure reduced average
salinities in the inflow area by approximately 3 (from 8.6
to 5.9) relative to the reference area. These inflows and
lower salinities coincided with increased growth of SAV
in the inflow area. All 34 open-water sample sites in the
inflow area contained submerged vegetation (either
rooted vascular plants or macroalgae), whereas only
20 of 34 open-water sample sites in the reference area
contained these aquatic plants (100% vs 59%). Because
samples were randomly allocated within the water
depths we could sample, these data provide an estimate
of SAV coverage in shallow (<1 m) water. The areal
coverage of SAV (rooted vascular plants only) was
significantly greater in the inflow area than the reference
area (66% vs 18%). Most SAV sites contained
Myriophyllum spicatum and Potamogeton pusillus. Rup-
pia maritima, Najas guadalupensis, and Ceratophyllum
demersum also were common, but less abundant.
Daytime dissolved oxygen levels also were measurably
higher in the inflow area (Table 1), presumably because
of the prevalence of SAV in this area.

Macroalgae (an unidentified green alga and a Nitella
spp.) also were widespread in the study area. Sixteen
inflow sites and 12 reference sites contained macroalgae,
and macroalgae coverage was 100% at three inflow sites
and one reference site. Three inflow sites and nine
reference sites contained only macroalgae and no SAV.
We placed these 12 open-water sites in the “SAV habitat
type” category, because macroalgae at these sites
provided vegetation structure similar to other aquatic
plants.

We also found detectable differences in environmen-
tal variables among habitat types. Marsh sites generally
had higher turbidity levels, higher water temperature,
higher salinity, and lower water depth than SAV sites,
and (as expected) SAV sites were farther from the
shoreline than marsh sites (Table 1). All marsh sites were
within 2 m of the shoreline (Table 1). Marsh in the
inflow area was flooded more deeply and had lower
turbidity levels than marsh sites in the reference area
(Table 1).

5.2. Nekton

We collected a total of 4596 animals (23 fish species
and 10 decapod crustacean species) with a biomass of
1.94 kg wet weight in 100 samples (Tables 2 and 3).
Fishes accounted for 65% of the organisms, whereas
decapod crustaceans composed 84% of the biomass in
our samples. Most decapod crustaceans (96.0%) and
fishes (88.7%) were <50 mm in size. Therefore, our
samples contained all life stages of small resident
species, but nearly all fishery species were small
juveniles.
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significantly among habitat types. Biomass and density
patterns differed, however, for blue crab, Harris mud
crab, and rainwater killifish. Mean biomass for blue
crab and rainwater killifish was greater at inflow SAV
sites than at reference SAV and SNB sites (Table 3).
Mean Harris mud crab biomass was not significantly
different among habitat types. Reference marsh sites
contributed most gulf fiddler crab biomass and inflow
SAV accounted for most clown goby biomass.

Salinity ranged from 1 to 12 at inflow sample sites and
from 5 to 13 at reference sites. The relationship between
salinity and abundance of brown shrimp was relatively
weak. Simple regression analyses in which we regressed
brown shrimp density in a sample against salinity overall
and in either the inflow area or reference area were not
statistically significant (p > 0.2081). Thus, in the first step
of the ANCOVA procedure, we could not reject the
null hypothesis that the slope of the interaction term
(salinity X habitat type) was equal to zero (p = 0.2368).
Because brown shrimp densities were not dependent on
salinity values in the model, we could not proceed further
with the ANCOVA analysis. Scatter plots showed little
evidence of nonlinear relationships. If we classified the
samples into salinity classes, however, we detected
a significant positive relationship between mean brown
shrimp density and salinity class in the reference area
(Y = 0.1351X — 0.6525; p = 0.0235); 54% of the variabil-
ity in mean brown shrimp abundance (In transformed) was
explained by salinity. There was no significant relationship
between these variables in the inflow area.

We compared mean size among habitat types for two
important fishery species. Brown shrimp were similar in
size among the habitat types we sampled (ANOVA:
d.f. =433, F=0.228, p = 0.9206), and size distribu-
tions of brown shrimp were similar between the inflow
and reference areas. The mean size of blue crab differed
among habitat types (ANOVA: d.f. = 4,38, F = 4.238,
p = 0.0062). Blue crabs were significantly larger at
marsh sites than in SAV (36.3 vs 21.6 mm CW; ANOVA
contrast: d.f. = 1,38, F = 13.948, p = 0.0006), but
a difference in blue crab size between inflow and
reference areas was not detected in our analysis.

5.3. Canonical correspondence analyses

Forward selection of the environmental variables in
the complete model showed that all variables, with the
exception of distance-to-edge, were statistically signifi-
cant at an alpha level of 0.05. In addition to distance-to-
edge, SAV cover, water temperature, and dissolved
oxygen were excluded from the reference model, and
salinity, SAV cover, and dissolved oxygen were excluded
from the inflow model. The species—environment
correlations were highest for the reference area model,
followed by the complete model and the inflow area
model. The cumulative variation explained with the

first/second axes in the analyses was 45%/70%,
57%/86%, and 38%/73% for the complete, reference
area and inflow area models, respectively.

In the complete model, axis 1 was influenced most
positively by marsh and stem density and most
negatively by water depth (Table 4, Fig. 4a). The inflow
area, SAV cover, and water temperature had negative
scores on axis 2 in the model, whereas the reference area
and salinity had positive scores (Table 4, Fig. 4a).
Turbidity also had a relatively strong influence on both
axes. Axis | represents a marsh (shallow) to open-water
(deep) gradient; axis 2 contrasts the reference and inflow
areas (Fig. 4a). The model reflected lower salinity and
turbidity and higher temperature, dissolved oxygen, and
SAV coverage in the inflow area relative to the reference
area. The analysis also showed that turbidity was
highest at reference marsh sites and temperature was
highest at inflow marsh sites. Species close to the origin
(0, 0), such as blue crab and rainwater killifish were
ubiquitous, whereas grass shrimp, heavy marsh crab,
and sheepshead minnow were more common at marsh
sites than open-water sites (Fig. 4a). Brown shrimp,
naked goby, and heavy marsh crab were associated with
higher salinity sites. The Harris mud crab was encoun-
tered most frequently at open-water sample sites.

The reduced models for reference and inflow areas
relied on smaller sets of environmental variables. Over-
all, the environmental-species relationships in the
reference area model were similar to the complete
model, although in the reference area model, the
variables turbidity, dissolved oxygen, and SAV cover
were not significant (Fig. 4b). In both the reference area
and complete models, many species were closely tied to
specific habitat characteristics. In the inflow area model,
the most important variables influencing axis 1 were
turbidity and marsh with positive loadings and water
temperature and depth with negative loadings (Table 4).
Stem density and marsh were negatively related to water
depth in axis 2; water temperature was unrelated to
these variables. The CCA analyses showed that the
inflow area differed substantially from the reference area
in terms of environmental-species relationships. In the
inflow model, the plots for most species fell near the
origin (Fig. 4c), indicating that these species did not
respond strongly to environmental gradients. Heavy
marsh crab and sheepshead minnow, however, were
exceptions to this pattern because these species were
associated with turbid marsh sites (Fig. 4c). The heavy
marsh crab was found at sites with cooler temperatures
than sheepshead minnow.

5.4. Isotope analysis
We plotted stable isotope values against distance

along the transects. The inflow area was clearly
influenced by the diversion, as 6N values were
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the canonical correspondence analyses of the complete, reference, and inflow area models. SA = species axis,

Variable Complete Reference Inflow

Axis SAl SA2 EAl EA2 SAl SA2 EAl EA2 SAl SA2 EAl EA2
Inflow —0.04 ~0.23 —0.05 -0.35 - - - - — - - —
Marsh 0.74 0.11 0.89 0.16 0.84 0.05 0.97 0.08 0.37 0.49 0.45 0.65
Water depth —-0.75 —0.04 —-0.90 —0.06 —-0.84 0.09 -0.97 0.14 —0.35 —0.53 -0.42 —0.70
Stem density 0.56 —~0.08 0.67 -0.12 0.60 -0.12 0.69 —-0.18 —0.02 0.61 —0.02 0.81
Water temperature 0.21 —-0.29 0.25 —-0.45 0.33 -0.12 0.38 —0.18 -0.39 0.26 -0.47 0.34
Turbidity 0.43 0.37 0.51 0.58 - - - - 0.50 0.36 0.60 0.48
Salinity 0.06 0.40 0.07 0.62 —0.02 0.46 —0.03 0.74 — - - -
SAV cover -0.09 —0.31 —0.11 —0.49 - - - - - - - -
Dissolved oxygen —0.09 -0.24 —0.11 -0.37 - - - - — - - -

high 6'°N values of Mississippi River inputs, especially
nitrate (Fry and Allen, 2003) and particulate organic
nitrogen (PON); these nitrogen species have average
values in the 7—8%, range and are generally higher in
river water than in coastal waters lacking riverine inputs
(Fry and Allen, 2003; Wissel et al., in press). Lack of
high 6'°N values in the area north of Bayou Terre Aux
Boeufs is consistent with its use as a reference area (i.e.,
it was relatively free of river input).

Shrimp 6'3C values reflected the estuarine salinity
gradient, increasing down-estuary as predicted from
simple salinity-based mixing models (Fry, 2002a). The
higher 6'3C values observed in our study for marsh-
collected shrimp are often seen in marshes where
attached benthic microalgae are an important food
source (Currin et al., 1995).

The isotopic values for shrimp also differed by species.
Although all three species in our analysis are omnivo-
rous, brown shrimp consume relatively more animal
material than grass shrimp (McTigue and Zimmerman,
1998; Fleeger et al., 1999; Zimmerman et al., 2000).
Because of their tendency toward carnivory, brown
shrimp would be expected to have higher ¢'>C and
6'°N values than grass shrimp; higher 6'3C and 6"°N
values have been associated with higher trophic levels
(Fry et al., 2003). However, we observed the opposite
pattern along both transects, which could be misinter-
preted as evidence for brown shrimp feeding at a lower
trophic level than grass shrimp. A similar offset by 1-2%,
between grass shrimp and other organisms such as brown
shrimp, barnacles, and bay anchovies has been observed
in several Louisiana estuaries (Wissel and Fry, un-
published data), and rather may be related to habitat
preference than to trophic position. Epiphytes, as the
preferred food of grass shrimp (Fleeger et al., 1999), are
located in a narrow boundary layer where nutrient supply
may be limiting. A limited supply of dissolved inorganic
carbon for photosynthesis generally reduces fraction-
ation (O’Leary, 1988; Fogel et al., 1992) and results in
enriched 6'3C values. Similarly, the nitrogen dynamics
also are different in the boundary layer. A possible

explanation for the elevated 6'°N values found in grass
shrimp could be that recycled ammonium with high 6'°N
values is an important nutrient for epiphytes at the
boundary layer, and these elevated values are passed
from epiphytic algae up the food web.

Evidence for an effect on brown shrimp distributions
in the estuary caused by freshwater inflows from the
Caernarvon structure was inconclusive. Brown shrimp
densities in the estuary were relatively low, but densities
did not differ significantly among the habitat types we
sampled. Moreover, brown shrimp densities in habitat
types within the inflow area were at least as high as
densities in the same habitat types within the reference
area, an area that receives little, if any, freshwater from
the structure. Although densities of brown shrimp were
low in both the inflow and reference areas, these
densities were comparable to those documented in other
studies of similar habitat types and low-salinity (< 10)
areas of Louisiana. In the Terrebonne Bay estuary,
Rozas and Reed (1993) reported mean brown shrimp
densities during April and May of 0.8 m ™ and 2.3 m™*
in high Distichlis spicata marsh and low Spartina
alterniflora marsh, respectively. Comparable densities
(2.0 m™2) of brown shrimp were observed in a recent
study of shallow ponds in the same general area (Baltz
etal., personal communication). In the Barataria estuary,
Rozas and Minello (1999) reported brown shrimp
mean densities during May of 0.4m~2 and 1.3m~? in
Spartina patens marsh and SAV, respectively.

Salinity at sample sites ranged between 1 and 13, and
we expected to see a corresponding gradient in brown
shrimp density if salinity had a strong influence on the
distribution of this species. However, regression analy-
ses indicated no such pattern in the inflow area. In the
reference area, where salinities were higher, there was
a relationship between salinity (as a class variable) and
mean density of brown shrimp. The CCA analysis also
showed a significant correlation between brown shrimp
abundance in the reference area and increasing salinity.

The issue of how brown shrimp respond to salinity
patterns in estuaries is still a matter of debate. Barrett and
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Fig. 4. Assoctation of taxa and environmental variables based on canonical correspondence analyses for (a) the complete data set (inflow and
reference areas combined), (b) the reference area, and (c) the inflow area. Black dots represent the centroids for each taxon. The length of arrows
represents the relative importance of environmental variables in associations. Arrows pointing in the same direction indicate that the variables are
positively correlated, whereas arrows pointing in the opposite direction indicate a negative correlation. Arrows that are perpendicular indicate that
the variables are not correlated. h. marsh crab = heavy marsh crab, h. mud crab = Harris mud crab, r. grass shrimp = riverine grass shrimp, b. grass
shrimp = brackish grass shrimp, r. killifish = rainwater killifish, g. pipefish = gulf pipefish, and s. minnow = sheepshead minnow.

Gillespie (1973), Longley (1994), and Minello (1999) have
all postulated that salinity affects brown shrimp abun-
dance and distributions in estuarine environments, and
concluded that brown shrimp are most abundant at
salinities >15—19. Gunter et al. (1964) reported that
brown shrimp were most abundant at salinities > 10.
Zimmerman et al. (1990a) found brown shrimp densities
in Galveston Bay to be highest at mid-bay and lower-bay

stations where salinities were moderate to high. Densities
of brown shrimp in Lavaca Bay, TX decreased following
floods on the Lavaca River (Zimmerman et al., 1990b). In
contrast, Thomas (1999) analyzed 6 yr of trawl data from
the Louisiana Department of Wildlife and Fisheries’
(LDWF) Fisheries-Independent Monitoring Program
and found that the highest catch of brown shrimp
occurred at sites with salinities <10. Parker (1970)
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Results of the ANOVAs comparing the effects of location (reference, inflow areas), habitat (marsh, water = SAV plus SNB), and species
(Palaemonetes = P. paludosus plus P. intermedius, F. aztecus = Farfantepenaeus aztecus) on carbon, nitrogen, and sulfur isotopic values. Means (and
| standard error) of isotopic values, degrees of freedom (d.f.), F values, and p-values are presented for each main effect and interaction that had a
p-value < 0.05. Tukey adjustments were used for all pairwise comparisons

Element Factor d.f. F value Level A Level B p value
B3¢ Habitat 1 8.15 Marsh = —18.2 0.2) Water = —19.7 0.2) 0.005
Species 1 8.28 Palaemonetes=—18.8 0.2) F. aztecus=—19.9 (0.2) 0.006
SN Location 1 49.39 Reference = 8.8 (0.2)  Inflow = 11.1 (0.1)  0.0001
Species 1 2.72 Palaemonetes = 10.9 0.2) F. aztecus = 9.5 0.2) 0.001
3s Location X species 1 0.05 F. aztecus X Inflow = 9.3 (0.3) F. aztecus X Reference = 6.5 (0.4) 0.03

sampled brown shrimp in Galveston Bay and reported
that shrimp were concentrated in shallow water along
marsh shorelines where salinities were <5—10.

Salinities in our study area were all <15, and we
cannot address questions about brown shrimp distribu-
tion over a larger salinity range. However, overall
densities of brown shrimp in our study area were
relatively low in relation to densities observed in higher
salinity regions of Texas and Louisiana (Minello, 1999;
Rozas and Minello, 2001). We did observe other
evidence consistent with a negative response of brown
shrimp to freshwater inflows from the river diversion.
We collected no brown shrimp from the first 7 km of the
inflow area transect where salinities were <5. Although
present in these low-salinity waters near the upper end
of the transect (unpublished LDWF trawl data), brown
shrimp clearly were more abundant farther down the
estuary.

The stable isotope analysis for sulfur also provided
evidence for a negative response by brown shrimp to
freshwater inflows. Generally, sulfur isotope values in
estuarine animals are positively related to salinity (Fry,
2002a). In the Mississippi River, 6**S values for fish are
commonly between —5 and 0%, (Fry, 2002b), while in
marine environments values increase towards the value
of seawater sulfate, 21%, (Fry, 2002b). We generally
observed this predicted down-estuary trend of increasing
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Fig. 5. Plot of 8'3N values (%) of shrimp vs distance down-estuary (km
from the upstream end of transects) in inflow and reference areas.
Brown shrimp values have been adjusted upwards by 1.43%,, and grass
shrimp values are measured values. Filled and open symbols represent
samples from inflow and reference areas, respectively.

6**S isotope values for grass shrimp, but not for brown
shrimp. For brown shrimp in the inflow area, where
salinities were lower than in the reference area, one
would expect lower 6**S values, but we observed the
opposite, higher 6>*S values relative to the reference area.
One possible explanation for this pattern is that brown
shrimp are more mobile than grass shrimp, and had been
recently displaced down-estuary where they acquired
higher 6°*S values during feeding and growth. The brown
shrimp we collected thus may have been moving back up
the estuary after having been displaced earlier in the year
by freshwater inflows from the diversion. Although
speculative, this explanation does reconcile the observed
low salinities in the inflow area with high 6°*S values
measured in brown shrimp. An alternative explanation
for these sulfur stable isotope results is that salinities
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Fig. 6. 6**S (%,) values for brown shrimp (Farfantepenaeus aztecus,
upper panel) and grass shrimp (Palaemonetes paludosus and Palae-
monetes intermedius; lower panel) vs distance down-estuary (km from
the upper end of the transect). Filled and open symbols represent
samples from inflow and reference areas, respectively.
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were higher in the inflow area than the reference area
during the two-week period prior to our sampling trip.
However, continuous salinity recorders in the inflow area
on Crooked Bayou (~5 km northeast of our transect)
and False River (~2km northeast of our transect)
showed that mean salinities over this two-week period
were actually lower (6.0 vs 7.3—7.5) than during the week
when we collected our samples (Louisiana Department
of Natural Resources, LDNR). Salinity recorded in the
reference area at Hopedale Lagoon changed little
(means: 2-wk prior = 10.5; sampling week = 10.8) over
this same three-week period (LDNR).

The uncertainty surrounding the environmental
requirements of brown shrimp is surprising, given the
importance of the fishery for this species. A better
understanding of these requirements for brown shrimp
and other fishery species would make it possible to
design and operate large freshwater diversion structures
in a manner that would both restore estuarine areas and
benefit coastal fisheries. A combination of controlled
experiments and modeling studies may offer the best
approach for elucidating the relationship between
brown shrimp productivity and freshwater inflows
(and changes in salinity and water temperature). Future
research to examine the effects of freshwater inflows on
brown shrimp production should take advantage of the
potential for controlled releases from the Caernarvon
structure and incorporate a good BACI design to detect
short-term salinity effects on brown shrimp and other
organisms (Underwood, 1992). Information from such
studies along with other relevant ecological data could
be used to select the most efficient operating schedule for
diversion structures.

In summary, releases from the Caernarvon structure
freshened the inflow area as intended and increased SAV
and daytime dissolved oxygen concentrations. The
response by macrofauna to these increased freshwater
flows and habitat changes was more subtle. Changes in
community structure involved mostly changes in density
and biomass rather than shifts in species composition.
Although we detected no strong effect of the freshwater
diversion on brown shrimp abundance in the inflow
area, our results also suggest that shrimp in the inflow
area had been growing in higher salinity waters, possibly
following downstream displacement by the diversion.
Species that would benefit most from continued
freshwater diversions are likely to be those species that
both use SAV as nursery habitat and thrive in a low-
salinity environment. Nutrients carried by water from
the structure were incorporated into the estuarine food
web, and these nutrient inputs, together with an increase
in SAV habitat, may enhance overall secondary
productivity in the inflow area. Close monitoring of
environmental conditions in the inflow area should
continue, however, for excessive development of SAV
beds or a reduction in water quality.
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